The Drawing Thickness of Graph Drawings

Alexandros Angelopoulos

Corelab
E.C.E - N.T.U.A.

February 17, 2014

Outline

Introduction - Motivation - Discussion

Variants of thicknesses

Thickness

Geometric thickness

Book thickness

Bounds

Complexity

Related problems \& future work

Motivation: Air Traffic Management

Motivation: Air Traffic Management

+ Maximization of "free flight" airspace

\mathbf{X} Direct-to flight (as a choice among "free flight") increases the complexity of air traffic patterns
Actually... \checkmark Direct-to flight increases the complexity of air traffic patterns and we have something to study...

Motivation: Air Traffic Management

How to model? - Graph drawing \& thicknesses

Geometric thickness $(\bar{\theta})$
Dillencourt et al. (2000)
+only straight lines

$\theta(G) \leq$
$\leq \bar{\theta}$
$\overline{\boldsymbol{\theta}}$
(G)
(
\leq
\leq
\checkmark Applications in VLSI \& graph visualization

$\mathbf{x} \theta, \bar{\theta}$, bt characterize the graph (minimizations over all allowed drawings)

Geometric graphs and graph drawings

Definition 1.1 (Geometric graph, Bose et al. (2006), many Erdös papers).
 A geometric graph G is a pair $(V(G), E(G))$ where $V(G)$ is a set of points in the plane in general position and $E(G)$ is set of closed segments with endpoints in $V(G)$. Elements of $V(G)$ are vertices and elements of $E(G)$ are edges, so we can associate this straight-line drawing with the underlying abstract graph $G(V, E)$.

We will transform this definition to the following:

Definition 1.2 (Drawing of a graph).

A drawing D of an (undirected) graph $G(V, E)$ is an straight line embedding of G onto \mathbb{R}^{2}. The drawing can be seen as a " $1-1$ " function $D: V \rightarrow \mathbb{R}^{2}$. We will write $D(G)$ to denote a drawing of graph G.

The drawing thickness

Definition 1.3 (Drawing thickness).

Let D be a drawing of $G(V, E)$. We define the drawing thickness, $\vartheta(D(G))$ to be the smallest value of k such that each edge is assigned to one of k planar layers and no two edges on the same layer cross

(a) $D_{1}\left(K_{4}\right)$

(b) $D_{2}\left(K_{4}\right)$

Figure: 2 different drawings of the $K_{4} \cdot \vartheta\left(D_{1}\left(K_{4}\right)\right)=1, \vartheta\left(D_{2}\left(K_{4}\right)\right)=2$.

The drawing thickness

Similar ideas appear (only?) in:

- Bernhart and Kainen (1979): "The σ-thickness $b t(G, \sigma)$ is the smallest k such that G has a k-book embedding with σ as a printed cycle"
printing cycle: the order of the vertices around the equivalent convex n-gon embedding on the plane
- Chung et al. (1987): "a book embedding with specific vertex ordering"

Possible applications

ATM: Flight Level organization

\checkmark Very dense traffic (lack of time \& deviation alternatives)
\checkmark Sparse traffic (excess of Flight Levels available)

Or...

Joseph A. Barbetta, 1990

Outline

Introduction - Motivation - Discussion

Variants of thicknesses

Thickness

Geometric thickness

Book thickness

Bounds

Complexity

Related problems \& future work

Outline

Introduction - Motivation - Discussion

Variants of thicknesses

Thickness

Geometric thickness

Book thickness

Bounds

Complexity

Related problems \& future work

Graph thickness

Definition 2.1 (Graph (theoretical) thickness).

Graph-theoretical thickness, $\theta(G)$, is the minimum number of planar graphs into which a graph G can be decomposed.

- The thickness of complete graphs is known for all n :

$$
\theta\left(K_{n}\right)= \begin{cases}1, & 1 \leq n \leq 4 \\ 2, & 5 \leq n \leq 8 \\ 3, & 9 \leq n \leq 10 \\ \left\lceil\frac{n+2}{6}\right\rceil, & 10<n\end{cases}
$$

Figure: Planar decomposition of $K_{5}: \theta\left(K_{5}\right)=2$.

Graph thickness

- $\theta\left(K_{m, n}\right)=\left\lceil\frac{m n}{2(m+n-2)}\right\rceil$, except for if $m n$ is odd, $m>n$ and there is an even r, with $m=\left\lfloor\frac{r(n-2)}{n-r}\right\rfloor([1])$.

Complexity of THICKNESS:

Theorem 2.1.

Given a graph G, the decision problem whether G can be decomposed into 2 planar layers is NP-complete.

Proof by Mansfield ([13]) uses PLANAR 3-SAT (with only 3 literals(!)) as the known $N P$-complete problem for the reduction.

Graph thickness

Two equivalent ways to "see" a graph's thickness:

- Pure planar decomposition
- The "best" drawing, edges being arbitrary curves

Figure: Showing (and seeing) that $\bar{\theta}\left(K_{3,5}\right)=2$

Outline

Introduction - Motivation - Discussion

Variants of thicknesses

Thickness

Geometric thickness
Book thickness

Bounds

Complexity

Related problems \& future work

Geometric thickness

Definition 2.2 (Geometric thickness).

We define $\bar{\theta}(G)$, the geometric thickness of a graph G, to be the smallest value of k such that we can assign planar point locations to the vertices of G, represent each edge of G as a line segment, and assign each edge to one of k layers so that no two edges on the same layer cross.

- As geometric thickness is a restriction over graph-theoretical thickness (straight line segments), it is clear that for any graph G stands $\theta(G) \leq \bar{\theta}(G)$.
- By Fáry's theorem, any planar graph G can be drawn in such a way that all edges are straight line segments, therefore $\bar{\theta}\left(G_{\text {planar }}\right)=1$.
- By definition, for any graph G and any drawing D it is true that $\bar{\theta}(G) \leq \vartheta(D(G))$.

Geometric thickness

Theorem 2.2 (Dillencourt et al. (2000)).
For the complete $K_{n}, n \geq 12$ it is

$$
\left\lceil\frac{n}{5.646}+0.342\right\rceil \leq \bar{\theta}\left(K_{n}\right) \leq\left\lceil\frac{n}{4}\right\rceil
$$

Geometric thickness

Theorem 2.3 (Dillencourt et al. (2000)).

$$
\bar{\theta}\left(K_{n}\right)= \begin{cases}1, & 1 \leq n \leq 4 \\ 2, & 5 \leq n \leq 8 \\ 3, & 9 \leq n \leq 12 \\ 4, & 15 \leq n \leq 16\end{cases}
$$

For the complete bipartite graph $K_{m, n}$ it is:

$$
\left\lceil\frac{m n}{2 m+2 n-4}\right\rceil \leq \theta\left(K_{m, n}\right) \leq \bar{\theta}\left(K_{m, n}\right) \leq\left\lceil\frac{\min (m, n)}{2}\right\rceil
$$

Open Problem 1.

What is the geometric thickness of K_{13} and K_{14} ? (3 or 4?)

Thickness vs. geometric thickness

- We know that $K_{6,8}$ has graph-theoretical thickness 2, but geometric thickness 3.
- Ratio between book thickness and geometric thickness has been proven unbounded by any constant factor:
- D. Eppstein ([8]) used lemmata from Ramsey theory to prove there are graphs with thickness 3 and arbitrarily large geometric thickness.
- Same problem for graphs with $\theta=2$ remains open.

Geometric thickness

Recent result:

Theorem 2.4 (Durocher et al. (2013)).
Recognizing geometric thickness 2 graphs is NP-hard.

We may refer to the problem as GEOM.THICKNESS

Open Problem 2.

For a graph G, does the decision problem $\bar{\theta}(G) \leq 2$ belong to class NP?

Outline

Introduction - Motivation - Discussion

Variants of thicknesses

Thickness

Geometric thickness

Book thickness

Bounds

Complexity

Related problems \& future work

Book embeddings and thickness

Definition 2.3 (Book embedding (L. T. Ollman,1973)).

A k-book embedding β of $G(V, E)$ is a placing of all $v \in V$ along the spine L of a book B, and a drawing of all edges $e \in E$ as arbitrary open (Jordan) arcs joining respective vertices, either in L or onto one exactly of k book pages $\left\{P_{1}, \ldots, P_{k}\right\}$, such that arcs on the same page do not cross.

(a) A book embedding β of G with 3 pages

(b) A book embedding $\beta_{o p t}$ of
G with the optimum of 2 pages

Book embeddings and thickness

Naturally we will define:
Definition 2.4 (Book thickness).
We define $b t(G)$, the book thickness of a graph G, to be the smallest value of k such that G has a k-book embedding.

Book thickness alternative definition

Definition 2.5 (Book thickness via convex graph drawing).

 If G has a connected component which is not a path, we can define $b t(G)$ as the smallest value of k such that vertices of G are placed in convex position, each edge of G is a line segment, and each edge is assigned to one of k layers so that no two edges on the same layer cross.

Figure: Book embedding and convex embedding.

Convex graph drawing

Definition 2.6.

A drawing D of a graph $G(V, E)$ is said to be convex if D maps set V to a convex point set on \mathbb{R}^{2}.

We will often use the notation $D_{\text {conv }}$ to distinguish these cases. Analogously to linking geometric thickness with our drawing thickness, we have:

- bt $(G) \leq \vartheta\left(D_{\text {conv }}(G)\right)$

Outline

Introduction - Motivation - Discussion

Variants of thicknesses

Thickness

Geometric thickness

Book thickness

Bounds

Complexity

Related problems \& future work

Bounds of drawing thickness

Geometrical thickness $(\bar{\theta})$

Dillencourt et al. (2000)

+ only straight lines
+ convex positioning of nodes

Book thickness (bt)
Bernhart and Kainen (1979)
-

$$
0
$$

Bounds of drawing thickness

That is the question

Open Problem 3 (as stated by D. Wood).

What is the minimum number of colours such that every complete geometric graph on n vertices has an edge colouring such that crossing edges get distinct colours

Open Problem 3 ("Translation").
Let the quantity $\vartheta(D(G)),|V|=n$ be bound by quantity $A(n)$, for any G of size n and drawing D. What is $A(n)$?

- The convex case dictates: $A(n) \geq\left\lceil\frac{n}{2}\right\rceil$
- Easy to see that $A(n) \leq n-1$
- Bose et al. (2006) impoved the upper bound to $n-\sqrt{\frac{n}{12}}$

A peculiar observation

- Dillencourt et al. (2000) proved (roughly) that $\bar{\theta}\left(K_{n}\right) \leq\lceil n / 4\rceil$. Along with having $b t(G)=\lceil n / 2\rceil$ we may ask:

Is the convex case the worst case for our drawing thickness?

Then it would be $A(n)=\lceil n / 2\rceil$ and tight.

Sparse vs. dense graphs' drawings

Lemma 3.1.
Let $G(V, E)$ be drawn onto \mathbb{R}^{2} via D. It is $\bar{\theta}(G) \leq \vartheta(D(G)) \leq \min (|E|, A(n))$ for any D.

If it is indeed $A(n)=\lceil n / 2\rceil$ then what would be more interesting is when $\vartheta(D(G))<\left\lceil\frac{n}{2}\right\rceil$

Outline

Introduction - Motivation - Discussion

Variants of thicknesses

Thickness
Geometric thickness

Book thickness

Bounds

Complexity

Related problems \& future work

Determining $\vartheta(D(G))$ is NP-complete

What we will use:

- Ehrlich et al. (1976), Eppstein (2003): Given a set of line segments on the plane, it is NP-complete to determine if the intersection graph of its edges is 3-colorable. In other words, 3-COLOR is NP-complete in SEG graphs
- Garey et al. (1980): COLOR in CIRCLE graphs is NP-complete
- CIRCLE 3-COLOR: is stated as polynomially solvable in www.graphclasses.org with Garey et al. (1980) as a reference.(?)

Arbitrary drawing case

Convex drawing case \Downarrow
conv-D.THICK
\Downarrow SEG graphs $\quad \supset \quad$ CIRCLE graphs

Intersection and crossing graphs

Definition 4.1 (Intersection model (graph)).

Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be a family of line segments on the plane. Its intersection model is the graph $H(V, E)$ with $V=\left\{s_{1}, \ldots, s_{n}\right\}$ and $s_{i} s_{j} \in E \Leftrightarrow s_{i}$ intersects s_{j}. We will denote here $H=I^{S}$. And by definition $H \in S E G$.

Definition 4.2 (Crossing model (graph)).

Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be a family of line segments on the plane. The crossing graph of S is the graph $H(V, E)$ with $V=\left\{s_{1}, \ldots, s_{n}\right\}$ and $s_{i} s_{j} \in E \Leftrightarrow s_{i}$ crosses s_{j}. We will denote $H=C^{S}$.

- Obviously, there are many sets S such that $C^{S} \neq I^{S}$.
- So, if we consider a drawing of a graph, its thickness can be directy associated with the coloring of its crossing graph $C^{D(S)}$.

CIRCLE graphs

Definition 4.3.

A graph G is a CIRCLE graph if it has an intersection model of chords of a circle.

CIRCLE graphs and convex graph drawings

Theorem 4.1.

Every convex drawing on n vertices $D_{c o n v}^{(n)}$ is equivalent to any other $D_{c o n v}^{\prime(n)}$ as long as the ordering of the vertices around the defined convex polygon remains the same, i.e. derives by rotation and refletion of the initial ordering.

Proof.

See my Diploma Thesis.

- We can transform any convex drawing to an equivalent drawing on a circle.
- Then, drawn edges are chords of the circle.

conv-D.THICK is NP-complete

Theorem 4.2 (Chung et al. (1987)).
It is NP-complete to determine the pagenumber of a book embedding with specific vertex ordering.
Or, using our terminology:
It is NP-complete to determine the drawing thickness of a convex graph drawing.

- Chung et al.'s proof is an (easy) reduction from CIRCLE COLOR.
- We just note our slightly more generic class of convex drawings through the conditions of equivalence.
- Therefore, D.THICK is also NP-complete.

conv-D. THICK is NP-complete

The proof: tweaking the endpoints

Proposition 4.1.

For every graph G and convex drawing $D_{\text {conv }}, C^{D_{\text {conv }}(G)} \in C I R C L E$.
Question remains for CIRCLE 3-COLORABILITY

SEG 3-COLORABILITY $\leq P$ 3-D.THICK

Proposition 4.2.

For every graph G and drawing $D, C^{D(G)} \in \operatorname{SEG}$.

- Key: tweaking endpoints (shorten them) and splitting apart intersecting parallel segments.

SEG 3-COLORABILITY $\leq^{P} 3$-D.THICK

Proposition 4.3.

Let S be a set of line segments on the plane. $G=I^{S} \in S E G$ and we can construct in poly-time some S^{\prime} such that $C^{S^{\prime}}=G$.

- Key 1: tweaking endpoints (extend them)
- Key 2: see parallel intersecting segments as an interval graph

SEG 3-COLORABILITY \leq^{P} 3-D.THICK

- MAX CLIQUE is polynomial time for interval graphs ([16]) and so is the problem of finding and ordering every distinct maximal clique, which can easily be solved in $\mathcal{O}(n)$ time using a sweep line (greedy) algorithm.

SEG 3-COLORABILITY \leq^{P} 3-D.THICK

Theorem 4.3.
3-D. THICK is NP-complete.

- Actually, it is SEG COLORABILITY $\equiv{ }^{P}$ D.THICK

Outline

Introduction - Motivation - Discussion

Variants of thicknesses

Thickness

Geometric thickness

Book thickness

Bounds

Complexity

Related problems \& future work

Drawing thickness of star polygons/figures

- A star polygon $\{n / k\}$, with n, k positive integers, is a figure formed by connecting with straight lines every $k^{\text {th }}$ point out of n regularly spaced points lying on a circle.
- Originally, for a star polygon we have $\operatorname{gcd}(n, k)=1$, and if $\operatorname{gcd}(n, k)>1$ we often come across the term "star figure"
- It is actually convex graph drawing, according to our terminology. k is called density of the star polygon. Without loss of generality, take $k \leq\lfloor n / 2\rfloor$.

(i) $S_{6 / 2}$

(j) $S_{12 / 5}$

(k) $S_{14 / 4}$

Drawing thickness of star polygons/figures

Theorem 5.1.

The drawing thickness of $S_{n / k}$ is $\vartheta\left(S_{n / k}\right)=\left\lceil\frac{n}{\left\lfloor\frac{n}{k}\right\rfloor}\right\rceil=k+\left\lceil\frac{r}{q}\right\rceil$, the integers satisfying the Euclidean division: $n=k \cdot q+r, 0 \leq r<k$. In addition, for $k_{1}>k_{2}$ it is $\vartheta\left(S_{n / k_{1}}\right) \geq \vartheta\left(S_{n / k_{2}}\right)$.

$$
\text { (m) } \vartheta\left(S_{12 / 5}\right)=6
$$

$$
\text { (n) } \vartheta\left(S_{14 / 4}\right)=5
$$

- Key for the proof is the quotient q which is the maximum number of possible edges within a single layer

Drawing thickness of star polygons/figures

- If $\operatorname{gcd}(n, k)=1$, then we can draw the figure without lifting our pen and the quantity $\left\lceil\frac{n}{q}\right\rceil$ is quite evident.
- Otherwise, key $\# 2$ of the proof is the gap of size $p=\operatorname{gcd}(n, k)$ between the "minors" $S_{(n / p) /(k / p)}$.

Point sets that dictate $\vartheta\left(\boldsymbol{D}\left(K_{n}\right)\right) \geq\left\lceil\frac{n}{2}\right\rceil$

A $2 r$-point set P in general position on the plane is said to admit a perfect cross-matching if there are exactly r pairwise crossing segments that cover all $2 r$ points. We will denote the class of such point sets by $P_{p c m}$.

Pach and Solymosi (1999): a point set P admits a perfect cross-matching if and only if the number of halving lines $h(P)=r$ (in general it is $h(P) \geq n$), and there is an $O(n \log n)$-time $(O(n)$-space $)$ algorithm that decides if $P \in P_{p c m}$.

Our interesting question was when $\vartheta(D(G))<\left\lceil\frac{n}{2}\right\rceil$ (especially if our conjecture prooves to be correct).

What we can answer now in polynomial time is if $D(G) \in P_{p c m}$ and thus if all edges-having lines are drawn $(O(n)$ time to check), we are sure to have $\vartheta(D(G))=n / 2$.

Point sets that allow $\boldsymbol{\vartheta}\left(\boldsymbol{D}\left(\boldsymbol{K}_{n}\right)\right) \leq\left\lceil\frac{n}{2}\right\rceil$

Bose et al. (2006), using plane spanning double stars:

Point sets that allow $\boldsymbol{\vartheta}\left(\boldsymbol{D}\left(\boldsymbol{K}_{n}\right)\right) \leq\left\lceil\frac{n}{2}\right\rceil$

Triangulation Existence problems

For the following we consider a graph $G(V, E)$ and a drawing D, and our point set is $P=D(V)(|P|=n)$.

Point set triangulation (TRI): is a triangulation of the convex hull of the point set P with exactly all points of P being vertices of the triangulation. If $h(P)$ is the number of the points of P that define its convex hull, then any triangulation of P includes $e=3 n-h(P)-3$ drawn segments/edges.

Polygon triangulation (POLY-TRI): is a decomposition of some polygon defined on P. Every triangulation of such a n-gon on the plane requires exactly $n-3$ drawn segments/edges.

Convex triangulation (CONVEX TRI): The two definitions coincide when the point set P is convex and thus only one (convex) polygon is defined on P.

Point set triangulation

Theorem 5.2 (Lloyd (1977) and in our words).
For an arbitrary drawing D of $G(V, E)$, TRI of $P=D(V)$ is NP-complete.

Convex triangulation

CONVEX TRI is polynomially solvable \geq_{p} CIRCLE IND. SET

IND. SET of circle graphs can be computed in polynomial time: $O\left(n^{3}\right)$ by Gavril (1973) and up to the most recent $O(n \min (d, \alpha))$-time output sensitive algorithm, d being the density of the graph and α being its independence number, by Nash and Gregg (2010).

Figure: Maximal set of $9=2 \cdot 6-3$ pairwise non-crossing edges for a convex drawing and the corresponding crossing graph with max. ind. set of size 9 .

What about POLY-TRI

Open Problem 4.
 For given G, D, decide POLY-TRI on $P=D(V)$.

Proposition 5.1.

```
POLY-TRI \inNP.
```


Proof.

Easy to see that a non-deterministic algorithm can guess some subset of E of size $2 n-3$ and check in polynomial time if the set is planar.

Some more ideas for future work

The variants of our main problem
Open Problem 5.
What is the minimum number of colours such that every complete geometric graph on n vertices has an edge colouring such that:
[Variant B] disjoint edges get distinct colours
[Variant C] non-disjoint edges get distinct colours
[Variant D] non-crossing edges get distinct colours

Little example in this direction

Variant C: non-disjoint edges get distinct colours.

- Edges with same color are a plane matching (at most $n / 2$ edges)
- Known lower bound: $C(n) \geq n-1$.
- Little improvement: $C(n) \geq n$.

Proof.

On the board.

The end

Thank you!

Bibliography I

[1] L. W. Beineke, F. Harary, and J. W. Moon. On the thickness of the complete bipartite graph. Mathematical Proceedings of the Cambridge Philosophical Society, pages 01-05, 1964.
[2] F. Bernhart and P. C. Kainen. The book thickness of a graph. Journal of Combinatorial Theory, Series B, 27(3):320-331, 1979.
[3] P. Bose, F. Hurtado, E. Rivera-Campo, and D. R. Wood. Partitions of complete geometric graphs into plane trees. Comput. Geom., 34(2):116-125, 2006.
[4] F. R. K. Chung, F. Thomson, Leighton, and A. L. Rosenberg. Embedding graphs in books: a layout problem with applications to VLSI design. SIAM J. Algebraic Discrete Methods, 8:33-58, 1987.

Bibliography II

[5] M. B. Dillencourt, D. Eppstein, and D. S. Hirschberg. Geometric thickness of complete graphs. J. Graph Algorithms Appl., 4(3):5-17, 2000.
[6] S. Durocher, E. Gethner, and D. Mondal. Thickness and colorability of geometric graphs. In WG, pages 237-248, 2013.
[7] G. Ehrlich, S. Even, and R. E. Tarjan. Intersection graphs of curves in the plane. J. Comb. Theory, Ser. B, 21(1):8-20, 1976.
[8] D. Eppstein. Separating thickness from geometric thickness. CoRR, math.CO/0204252, 2002.
[9] D. Eppstein. Testing bipartiteness of geometric intersection graphs. CoRR, cs.CG/0307023, 2003.
[10] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H.
Papadimitriou. The complexity of coloring circular arcs and chords. SIAM J. Alg. Disc. Meth., 1(2):216-227, June 1980.

Bibliography III

[11] F. Gavril. Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks, 3:261-273, 1973.
[12] E. L. Lloyd. On triangulations of a set of points in the plane. In FOCS, pages 228-240, 1977.
[13] A. Mansfield. Determining the thickness of graphs is NP-hard. Mathematical Proceedings of the Cambridge Philosophical Society, 93:9-23, 1983.
[14] N. Nash and D. Gregg. An output sensitive algorithm for computing a maximum independent set of a circle graph. Inf. Process. Lett., 110(16):630-634, 2010.
[15] J. Pach and J. Solymosi. Halving lines and perfect cross-matchings. In Advances in Discrete and Computational Geometry, volume 223 of Contemporary Mathematics, pages 245-249. 1999.

Bibliography IV

[16] A. Pêcher and A. K. Wagler. Clique and chromatic number of circular-perfect graphs. Electronic Notes in Discrete Mathematics, 36:199-206, 2010.
[17] W. T. Tutte. The thickness of a graph. Indagationes Mathematicae, 25:567-577, 1963.

